
1. Introduction

The Tcl Distributed Programming (Tcl-DP)

extension to Tcl/Tk [1][2] introduces a suite of com-

mands for creating client-server systems. In this

abstract, we provide examples of using Tcl-DP. We

also describe the remote procedure call (RPC)

abstractions and distributed object system of Tcl-DP.

2. A Client-Server Example

An id server can be built using Tcl-DP. The

Tcl code shown in Figure 1a initializes the id server.

The MakeRPCServer call of Figure 1a creates a

socket on port 4545 that will accept client connec-

tions. A socket is an endpoint of network communi-

cation in UNIX [5]. The Tcl code for client processes

is shown in Figure 1b. The MakeRPCClient call

of Figure 1b connects to the id server and returns a

handle to represent a socket. In line 2 of Figure 1b,

the RPC call retrieves an unique id from the id server,

by remotely invoking the GetId procedure defined

in line 3 of Figure 1a.

3. Distributed Objects

Tcl-DP features a distributed object system,

where an object is a collection of fields. With this

system, objects may be distributed to other connected

processes. Processes are connected with the MakeR-

PCServer and MakeRPCClient commands. A

change to a field in a distributed object in one pro-

cess is automatically propagated to other processes.

Tcl-DP also provides triggers. A trigger is a Tcl

expression that is evaluated when a field in a distrib-

uted object changes.

4. Implementation

The Tk send command uses the X ICCCM

protocol [3]. Processes connected by send use the X

Server to pass messages. Since Tcl-DP uses TCP/IP,

communicating processes in Tcl-DP do not need to

share an X Server connection. This has advantages.

First non-X clients need not connect to an X server to

exchange messages. Second, the round-trip message

time will be less in Tcl-DP since messages do not

pass through the X Server.

Tcl-DP provides three types of commands:

distributed object commands, RPC commands, and

socket manipulation commands. The distributed

object system is implemented entirely in Tcl, using

the RPC commands of Tcl-DP. The RPC commands

were originally implemented entirely in Tcl, using

the lower level socket manipulation commands, but

have been partially reimplemented in C for speed.

The round-trip time for an RPC, measuring only RPC

related code for machines on the same Ethernet sub-

net, is around 4 milliseconds. The Tk send com-

mand takes around 19 milliseconds for the same test.

The Tcl-DP extension consists of 3,500 lines of C

code and 500 lines of Tcl code.

5. Deadlock and Blocking

Any RPC system should be robust in the event

of connection failure. In Tcl-DP, programmers can

specify an optional millisecond time-out value for

RPC’s. RPC’s also usually block while waiting for a

remote return value and can thus prevent other

events, such as X events and incoming RPC’s, from

getting processed. This situation can easily lead to

deadlock. In Tcl-DP, programmers can specify the

types of events (Tk, file, timer, RPC, all or none) that

should be handled while the system is waiting for

RPC return values. Tcl-DP also supplies the RDO

Tcl Distributed Programming†

Brian C. Smith, Lawrence A. Rowe, Stephen C. Yen

Computer Science Division

University of California

Berkeley, California 94720

bsmith@cs.Berkeley.EDU, larry@cs.Berkeley.EDU, syen@postgres.cs.Berkeley.EDU

†This research was supported by the National Science Founda-
tion under Infrastructure Grant No. CDA-8722788. Additional
support was pro vided by Fujitsu America and Hewlett-Packard.

command, which unlike the RPC command, does not

wait for the return value of a remote evaluation but

returns immediately. An RDO takes around 500

microseconds to complete.

6. Conclusion

The features of Tcl-DP, including its flexible

RPC mechanism, distributed object system, and its

integration with Tcl/Tk, has allowed us to quickly

implement several client-server applications with the

same speed and ease as when one creates applica-

tions with Tcl/Tk. Among these have been a network

name server and a distributed continuous media sys-

tem [4].

References

[1] Ousterhout, J. “Tcl: An Embeddable Command

Language.” Proc. USENIX Winter Conference,

January 1990.

[2] Ousterhout, J. “An X11 Toolkit Based on the

Tcl Language.” Proc. USENIX Winter Confer-

ence, January 1991.

[3] Scheifler, R., and Gettys, J., with Flowers, J.,

Newman, R., and Rosenthal, D. X Window Sys-

tem: The Complete Guide to Xlib, X Protocol,

ICCCM, XLFD (Second Edition). Digital

Press, 1990.

[4] Rowe, L., and Smith, B. “A Continuous Media

Player.” Third International Workshop on Net-

work and Operation System Support for Digital

Audio and Video. 1992, pp. 334-344.

[5] Kochun, S., and Wood, P. UNIX Networking.

Hayden Book, 1989.

On zonker.cs.Berkeley.EDU:

MakeRPCServer 4545

set lastId 0

proc GetId {} {

global lastId;

incr lastId;

return $lastId

}

On linus.cs.Berkeley.EDU:

set server [MakeRPCClient zonker 4545]

set id [RPC $server GetId]

(a) (b)

Figure 1: An ID Server and Client

